Introduction to
Objects and Classes

David Greenstein
Monta Vista High School

Object Lesson

4

Early Programming Languages

. ¢ Instructions and data were kept separate

Instructions (Fortran)

DO 10, I =1
READ (3,
FILENO

| 10 CONTINUE
k| 20 WRITE (*,*)

900 STOP 'Erro
END

, 100

*,END=20, ERR=900) COUNT (I),A(I),NAME (I)

=T
'"Input complete. Number of records:

r 1in 1nput file'

' FILENO

Data input

23 2 ForrestGump
103 6 HanSolo
271 3 Indianadon

esS

Object-Oriented Languages

e |nstructions and data are now bound to each other

e A paradigm that relates to the real world

public class Foot
{
private Image picture;
private CoordinateSystem coordinates;

// Constructor
public Foot(int x, int y, Image pic)
{
picture = pic;
coordinates = new CoordinateSystem(x, y, pic);

}

// Moves this foot forward by distance pixels
// (or backward if distance < 0).
public void moveForward(int distance)
{
coordinates.shift(distance, 0);

}

Objects

e QObjects contain values called “fields” that hold
information about the state of the object. (Also called
“attribute”.)

- Obiject: Person
~ Fields: Weight, eye color, age, grade, etc.

e Objects contain procedures called “methods” that
describe the behavior of the object. Methods can also
be used for getting information, often called message
passing.

- QObject: Person
~ Methods: Report weight, procedure getting to school, etc.

Objects (cont.)

* Can model real-world objects
(lions, tigers, bears, oh my!)

* Can model GUI components (frame, panel, label, etc.)

e Can model software entities
(events, files, images, etc.)

e Can represent abstract concepts
(e.g. rules of a game)

FootTest Example

Foot foot = new Foot(x, y, shoe);
for (int count = 1; count <= 8; count++)

{
foot.draw(g);

foot.turn(45);
foot.moveForward(stepLength);

Pl
N
%

.')
[\
A

4
Classes and Objects

A class is a description of a particular type of object,
also called a class definition. This definition is the

i source code of the program.

public class Foot
{
private Image picture;
private CoordinateSystem coordinates;

l,. // Constructor

public Foot(int x, int y, Image pic)
{
picture = pic;
coordinates = new CoordinateSystem(x, y, pic);

}

// Moves this foot forward by distance pixels
// (or backward if distance < 0).
public void moveForward(int distance)
{
coordinates.shift(distance, 0);

}

Classes and Objects

A class is a description of a particular type of object,

also called a class definition. This definition is the
source code of the program.

* An object is called an instance of a class. A program
can create more than one object (instance) of the same
class.

Foot foot = new Foot(x, y, shoe);

In other words ...

Class Object

* A blueprint for objects of a
particular type.

Attributes

e Defines the structure of the
attributes or fields (number,

types).
ypes) Behaviors

e Defines the behaviors or
methods of its objects.

Example
Class: Bicycle Object: My Bike

>.

Attributes: Attributes:

Color Color = Silver
’ “ Weight Weight = 26 Ibs.

Type | Type = Recumbent
Material Material = Titanium

Behaviors: Behaviors:
Shift gear up shiftUp()
Shift gear down > shiftDown()
Pedal pedal()

Brake brake()

I

=

Class vs. Object

CLASS OBJECT

An entity that exists

A piece of source code . .
| during execution

...

Definition stored on the
hard drive 5

Written by the éCreated and destroyed by
programmer ~ the running program

4

Libraries of Classes

e Java programs (class definitions) are not written from
scratch.

* There are hundreds of Java classes already written and
available.

* Libraries are organized into “packages”, for example:
~ java.util — miscellaneous utility classes
© java.awt — windowing and graphics toolkit
© javax.swing — GUI development package

A

l| .
.-

Java API’

* API stands for Application Program Interface and

contains all the documentation on Java’s library of

classes.

Java™ Platform
Standard Ed. 7

All Classes
Packages

java.applet

java.awt
java.awt.color
java.awt.datatransfer
java.awt.dnd
java.awt.event
java.awt.font
java.awt.geom
java.awt.im
java.awt.im.spi

e

" Overview Package Class Use Tree Deprecated Index Help Standard Ed. 7

Prev Next Frames No Frames

AbstractAction
AbstractAnnotationValueVisitoré
AbstractAnnotationValueVisitor7
AbstractBorder

AbstractButton

AbstractCellEditor
AbstractCollection
AbstractColorChooserPanel
AbstractDocument
AbstractDocument.AttributeContext
AbstractDocument.Content
AbstractDocument.ElementEdit
AbstractElementVisitor6
AbstractElementVisitor7
AbstractExecutorService
AbstractinterruptibleChannel
AbstractLayoutCache
AbstractLayoutCache.NodeDimensions
AbstractList

AbstractListModel

AbstractMap
AbstractMap.SimpleEntry
AbstractMap.SimplelmmutableEntry
AbstractMarshallerimpl
AbstractMethodError
AbstractOwnableSynchronizer

AhetrartPrafarancoc

Java™ Platform, Standard Edition 7

API Specification

This document is the API specification for the Java™ Platform, Standard Edition.

See: Description

Package
Java.applet

Java.awt
Java.awt.color

Java.awt.datatransfer
Java.awt.dnd

Java.awt.event
Java.awt.font
Java.awt.geom
Java.awt.im
Java.awt.im.spi
Java.awt.image
Java.awt.image.renderable
Java.awt.print

Java.beans

Java.beans.beancontext

lava in

Description

Provides the classes necessary to create an applet and the classes an applet uses to communicate with its applet
context.

Contains all of the classes for creating user interfaces and for painting graphics and images.
Provides classes for color spaces.
Provides interfaces and classes for transferring data between and within applications.

Drag and Drop is a direct manipulation gesture found in many Graphical User Interface systems that provides a
mechanism to transfer information between two entities logically associated with presentation elements in the GUI.

Provides interfaces and classes for dealing with different types of events fired by AWT components.

Provides classes and interface relating to fonts.

Provides the Java 2D classes for defining and performing operaticns on objects related to two-dimensional geometry.
Provides classes and interfaces for the input method framework.

Provides interfaces that enable the development of input methods that can be used with any Java runtime environment.
Provides classes for creating and modifying images.

Provides classes and interfaces for producing rendering-independent images.

Provides classes and interfaces for a general printing API.

Contains classes related to developing beans -- components based on the JavaBeans™ architecture.

Provides classes and interfaces relating to bean context.

Draiddas far sustam innot and actn b theainh data straams sarializatinn and tha fila sustam

Importing Classes

* The method for getting access to these classes is to
import them into your source code.

import java.awt.Color;
import java.util.ArraylList;
import javax.swing.JPanel,;

 There are so many library classes from which to choose!
Learning about these classes, where to find them, and
how to use them takes time and lots of practice.

e Luckily, you get the java.lang package imported
automatically. It contains important classes like
System, Math, Object, and String.

.‘\‘i‘

A Short Lesson on
Creating a
Class Description

MyClass.java

import .. Import statements

public class MyClass
{

Class header

_ Attributes/variables that define the
Fields object's state; can hold numbers,
characters, string, other objects

Procedures for constructing

Constructors a new object of this class
and initializing its fields
Methods Actions that an object of

this class can take
) (behaviors)

4

7

Fields

private [static] [final] datatype name;

yd N\

Usually Optional: You decide
private means the field is

a constant
Optional:
means the field is Primitive: int, double, etc.
shared by all objects or an
from the class Object: String, Color, etc.

private double weight;
private String type;
A private final double LBS PER KG = 2.2046;

e

Constructors

public class Coordinate {
private int x, y; — Class and Constructor

/ names must be the same

— public Coordinate() ({
x =0;

y = 0; T~ There can be

} more than one

. public Coordinate (int myX, int myY) {/ Const.ructor
X = myX; defined

y

i
3

V3
<

} A Constructor with
no arguments is called

a no-args constructor

Methods
Values passed to

public class Coordinate { the method are
private int x, y; called parameters

public void addToX(int num) { Methods can return
um; values or objects

ic double distance (Coordinate other) {
return Math.sqrt(Math.pow(x - other.x, 2)
+ Math.pow(y - other.y, 2));

A void return type
means the method
only does an action
internal to the object

Methods can declare
and use variables
called local variables

Coordinate origin = new Coordinate();
Coordinate point = new Coordinate
— two.addToX (5) ;
double dist = point.distance (origin);

’

-
e

>
OOP Advanced Features

* Encapsulation and Information Hiding

> A class interacts with other classes only through constructors and
public methods.

» Other classes do not need to know the mechanics
(implementation details) of a class to use it effectively.

> Encapsulation facilitates team work and program maintenance
(making changes to the code).

* |Inheritance

» The programmer can create a new class that extends an existing
class, and it is called a subclass.

-~ The class extended by the subclass is called the superclass.

 All classes have a superclass called Object and it can be found in
the java.lang package.

The features will be discussed more in Chapters 9 and 11

Questions?

